
1
SDP20 – TEAM #17

1

IKU Electronic Control
Unit

Takuya Seaver, EE, Jack Walter, CSE, Yongjie Yang,

EE, and Xueteng Qian, CSE

Abstract—As global temperatures are on the rise the need for
new improvements in fuel injection is needed for today’s vehicles.
In order to achieve the goal of halting the effects of global
warming, the IKU electronic control unit tests the limits of how
many miles a vehicle can achieve on one gallon of gasoline. This
device consists of two main components. The first component
being the hardware that will be connected to the engine where it
will convert information of one type to another, so that the other
component, the software can process the data. The software will
then send a command signal to the fuel injector. In the end, the
fuel injector will spray fuel into the engine for the correct amount
of time so that the engine can efficiently use its fuel source and
get the most miles out of it.

I. INTRODUCTION

A. Significance
Global warming is a topic that is in the news, on the internet,

and affects the entire world. The most abundant greenhouse
gas in our atmosphere is CO2 . The largest source of these 2

rising CO2 emissions is in the transportation industry . Until 3

the electric car is made more attainable for people then
lowering the amount of CO2 emissions created by the
transportation industry is an intermediary solution.

B. Context and Existing Products
The UMass Super Mileage Vehicle team or SMV team for

short, is a team of mechanical engineering students that test
the limits of the modern-day combustion engine. The number
of miles that can be brought out by one of these engines is
mainly determined by the efficiency of the vehicle’s method
of mixing fuel and air to produce the optimal fuel-to-air ratio.
Several options are available on the market today such as an
off-the-shelf electronic control unit. Another option is to use a
carburetor which mixes air and fuel to produce the desired
ratio. These methods have been tried before, but what they
lack is customization. Our solution differs in the fact that it
allows for the SMV team to modify the device so that it can be
tuned to their exact needs. As for the SMV team, their vehicle
can have a fully tunable Electronic Control Unit (ECU) to get
the most miles per gallon.

1
T. Seaver from Plymouth, MA (e-mail: tseaver@umass.edu).
J. Walter from Westwood, MA (e-mail: jackwalter@umass.edu).
Y. Yang from Linzi, China (e-mail: yongjieyang@umass.edu).
X. Qian from Beijing, China (e-mail: xqian@umass.edu).
2 See [1] in the References Section
3 See [2] in the References Section

C. Societal Impacts
The SMV team would be our main use case. They need an

ECU that can be modified, so that they can perform better at
the yearly competition that they compete in . This product 4

could positively affect them by performing better than their
current off-the-shelf ECU. One downside to our product is that
it does not eliminate CO2 emissions. Our product will still be
the control system for a fuel injection system that burns fossil
fuels. There will still be some sort of CO2 emissions, even
though not as much. This is seen as only an intermediary step
to achieving less carbon emissions in our atmosphere.

D. Requirements Analysis and Specifications
We were given some details as to the requirements of the

design. The system needed to be tunable and customizable.
For this, there needs to be documentation provided.
Documenting modifications and how to modify existing tables
and data so that the vehicle can be tuned. This data is to be
modified using information that is observed when the O2
sensor is mounted. The system needs to be able to take in
information from the O2 sensor when needed for tuning.
Safety is also an important factor. If the system fails and is not
injecting fuel correctly then the system needs to be able to be
turned off manually. Also, since the processes within the
engine happen within milliseconds then our system needs to
be responsive enough. The requirements and specifications are
listed below in Table 1.

Requirement Specification Value
Tuning O2 Sensor

Mountable
N/A

Responsive Duration <=10ms
Safety Switch ON/OFF
Frequency RPM Limit Up to 6000RPM
Modifiable Modify Tables Instructional

Documentation

 Table 1: Requirements and Specifications

II. DESIGN

A. Overview
As an intermediary solution, an Electronic Control Unit

(ECU) is a good way to improve the modern combustion
engine until electric vehicles become cheaper and more
available. An ECU is an integral part of the throttle body fuel
injection engine, because it can easily provide the accurate
amount of fuel and air into the engine that increases the
power. Besides, a carburetor is also a device that can mix air
and fuel to inject the engine (Appendix A). Not many
specifications of our design imposed significant tradeoffs. One

4 See [3] in the References Section

2
SDP20 – TEAM #17

that did was the responsiveness of our device. Having a 10ms
worst case time limit of injecting fuel was difficult to work
with. Some hardware just was not fast enough and when we
were able to get the time below that threshold then we
couldn’t find an effective way of demonstrating it. The only
effective way that we found was to use an oscilloscope. Even
with this, we had to slow down our device to show that it
could work for different pulse widths by adjusting the
accelerator which was our synthesized Arduino signal.

Thus, we design an ECU. See the ECU block diagram in
Figure 1. Firstly, we synthesized input signals because we
have to simulate the signals from sensors. For the car, an ECU
can read signals from the crankshaft sensor, O2 sensor,
manifold air pressure sensor and intake air temperature sensor.
After reading the input signals, then we have to design our
ECU develop the software by using a microcontroller, in this
case an ATtiny817 . Besides this, through an integrated circuit 5

level shifter and driver, the control signal from the MCU can
precisely control the fuel injector by accurate pulse width.

Figure 1: Block Diagram of ECU

For specifications in block 1, the ECU system should get a

real-time processing of input data signals for fuel injection.
And the system also should be able to get the feedback
capabilities with the O2 sensor for optimization. In block 2,
the microcontroller (MCU) can read signals supporting up to
6000 RPMs and able to have a correct pulse width to inject the
correct amount of fuel within ~10ms for the specification. In
addition, eventually, the hardware part of the level shifter and
output waveform driver can easily and precisely be ready to
drive a fuel injector by the control signal from the MCU.

B. Input Signals
Looking at Figure 1, the first big block is about simulated

signals from four kinds of sensors and one switch. The
crankshaft sensor measures the rotation speed (RPMs); the
manifold air pressure (MAP) sensor measures the air density

5 See [4] in the References Section

and air mass flow rate in the engine; the intake air temperature
sensor monitors the temperature of the air entering the engine;
the O2 sensor monitors how much unburned oxygen exits
from engine. In addition, the ignition switch is a mechanical
switch to control the open and close function of the engine to
inject fuel. So, when we synthesized the signals, we used the
Arduino Uno Rev3 to generate the input signals. To be 6

specific, we also used potentiometers which are connected to
the Arduino to modify the speed. From this part, we learned
how to simulate the signals and how to write the Arduino code
from what we learned in the course. Then we used an
oscilloscope to watch the input signals when we changed the
potentiometers for testing. Details in Appendix B.

C. MCU

 Figure 2: Lookup Table of MCU

Looking at Figure 1, there is a microcontroller (MCU) in
the ECU. One of the most important parts in ECU is to
develop the software in our ATtiny817 microcontroller. First
of all, looking at Figure 2, we have to consider the
relationships between the data of the sensors to find the output
pulse width in the lookup table. Then we write the C code by
using the Atmel Studio 7 IDE . Then the software can read the 7

synthesized signals from the input and give a correct pulse
width of the output. So, we accepted the coding idea from our
embedded systems class. It really helps us to experience and
understand the programming for the microcontroller. For
testing this part, we also used an oscilloscope to watch the
output signals when we changed the potentiometers. Details
see Appendix B.

6 See [6] in the References Section
7 See [5] in the References Section

3
SDP20 – TEAM #17

D. Level Shifter and Driver

Figure 3: Level Shifter Waveform

From Figure 1, there are two parts about the level shifter
and output waveform driver. The function of level shifter and
driver is reading the control signal from MCU and giving the
correct inverse pulse width to control the fuel injector, which
is supported by a 12V power supply. It means when the
voltage of the control signal is LOW(0V), the injector will
inject fuel, and when the control signal voltage is HIGH
(12V), then the injector will be closed and not inject fuel.
Looking at Figure 3, we can see what the output of the level
shifter looks like. We learned the method to design integrated
circuits from our electronics course and this project provides
an interesting experience for us. Especially for driving an
inductive load, which is the internal circuit of the fuel injector.
Then for testing this part, we used an oscilloscope to compare
the input and output pulse width to see whether or not it has
been inverted and has the same pulse width. Also, connecting
the whole thing to a fuel injector to see if the integration of the
whole system is working correctly.

III. THE PRODUCT

A. Overview

Figure 4: Product Sketch

Looking at Figure 4, the microcontroller, level shifter, and
fuel injection driver are all on the PCB. This is similar to the
block diagram provided in Figure 1. Through the harness,
which is a bunch of input and output cables, we can send our
output to the fuel injector and take in inputs from all of our
input signals listed in Figure 1. This would be done by routing
the correct input/output wires to certain pins which would be
connected to the PCB. The output to the fuel injector is a pulse
width modulated signal and the inputs to the PCB are analog
signals. The output would change based on the “speed” of the
vehicle which would be controlled by our Arduino based
synthesized crankshaft position sensor. This change can be
seen in Figure 5 and Figure 6 below.

Figure 5: Output Before Changing Speed

Figure 6: Output After Changing Speed

B. Electronic Hardware Component

The design of the hardware was difficult. Learning about
how to use Altium was a challenge, but we were able to
translate our working breadboard design to a PCB design.
When we received the parts then we planned out how we were
going to populate the board. We ended up designing two
versions of the board. One with the MCU on it and one
without the MCU. Our thought process was that the MCU was
going to be the biggest challenge since we didn’t know if
using the Atmel-ICE debugger would work or not. The first
design with the MCU on chip is shown in Figure 7 below.

4
SDP20 – TEAM #17

Figure 7: MCU On-Chip Design

This board had many problems. It suffered the same
problems as our backup version. The backup version, which is
shown below in Figure 8, had numerous output issues.

Figure 8: MCU Off-Chip Design

We were getting very inconsistent results from the NMOS
and BJT inputs and outputs. We hand made a through hole
PCB step by step to debug the issue, and we did not see any
issues. When we went through populating each board we saw
different issues each time. Some were due to burned out traces
from soldering the board too much to hopefully fix them while
others were showing dampened signals at the output of certain
transistors. We also tried to use some breadboard components
hoping that it would fix our problem since the breadboard
worked completely fine. This also did not work. We
eventually seeked the help from other Professors, but to no
avail. Our next step would have been to work with our advisor
and his PhD student to redesign the PCB from scratch.

C. Functionality

Figure 9: System Block Diagram

For our ECU, we have all the parts working on the
breadboard but not on the PCB we design. The system in
figure 9 is not very complex. Basically, we fetch sensor inputs
and use Attiny 817 to process them and then output pulse
width to the fuel injector.

For the inputs, we can successfully read them using the
ADC built in the Attiny817 chip. To verify it, we first changed
the value of the sensors and then used an oscilloscope to
measure the voltage for calculating what value should appear
on the ADC register, and we are correct if the value on the
register is the same as our calculation.

Figure 10: Software System Flowchart

After successfully reading the sensor inputs. We need to
process them with software described in figure 10, and to
process them we need to store them in buffers. We have data
buffers, but we did not provide the user interface because it is
not the essential part of our project, and we do not have time
left to build it due to COVID-19.

The RPM and Load is calculated using the sensor inputs
which are stored in the data buffers. The load is easy to
compute because it is calculated from a formula using inputs,
and we verified it by setting inputs to certain values and see if
the Load is correct. However, RPM is hard to calculate
because it is not directly calculated from the inputs but the
duration between each two inputs. We verified this by setting
the hall effect sensor to certain RPM and reading the RPM
value in the program. Last in the engine management part we
use the RPM and Load to get a pulse width which is the output
from the lookup table. We use the built in PWM module to
produce output pulse to level shifter and a driver circuit to
shift voltage from 3.3V to 12V and drive the fuel injector.

Figure 11: Level-Shifter Pulse Wave

5
SDP20 – TEAM #17

Figure 11 is the picture for the level shifter. The yellow
pulse is output from the MCU and the input for the level
shifter. The blue one is the output from the level shifter. We
verified that the driver circuit works by sending a pulse to the
circuit and letting the injector inject compressed air.

We do not have quite complicated functionality and realize
all functions individually and combined together in our system
described in the diagram with correct functioning.

D. Performance

As Table 1 shows, there are five aspects that we want to
achieve. But in fact, our product has not gone through the final
testing and acceptance stage due to COVID-19, in other
words, our product has not been tested with a real car engine
in practice. Although this was disappointing, overall the
experiments in the laboratory were very successful. First of
all, we met the two important requirements in the laboratory
testing phase, one is responsive requirement, the other is
frequency requirement. For the frequency requirement, we
easily got the engine response time below 6000 RPM. Besides,
since processes within the engine occur in milliseconds, we
need to get the response time with a range of less than 10ms
for the responsive requirement. After many tests and
experiments, it works perfectly. Secondly, in mechanical
manufacturing, we tried to make a mechanical switch to
control the electronic control unit rather than an electronic
switch, but we didn’t have enough time to finish it. since we
didn’t test it on the engine, unfortunately, we haven’t had time
to process the data we read from the oxygen sensor.
Hopefully, we will have the opportunity to test more and
optimize more for our project.

IV. CONCLUSION
The current state of the project is good. There are some key

things to focus on soon. Getting the system to work for basic
functionality is of the utmost importance. Once that is settled
then we can focus on engine component integration. That will
provide a lot of work for us to do. Going from perfectly
working synthesized signals to somewhat unstable and
possibly unreliable engine components could become
problematic if enough time isn’t allocated to troubleshooting
any issues that may arise. To achieve our goal of using actual
engine components we will need a large amount of time
dedicated to it. Asking questions to the SMV team will also be
important since none of us have worked with these parts
before. Time is of the essence and to be where we want to be
as a group then near-perfect time management needs to be the
focus in the future.

ACKNOWLEDGMENT
As a group, we would like to thank our advisor, Prof. Xia,

for working around our schedule and meeting with us when
needed. Also, we would like to thank our evaluators, Prof.
Hollot and Prof. Gong, for providing good constructive
criticism. All points were made clear in their feedback and all

were taken into consideration.

REFERENCES
[1] “Inventory of U.S. Greenhouse Gas Emissions and Sinks,” EPA,

11-Apr-2019. [Online]. Available:
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissi
ons-and-sinks. [Accessed: 17-Dec-2019].

[2] “Sources of Greenhouse Gas Emissions,” EPA, 13-Sep-2019. [Online].
Available:
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
[Accessed: 17-Dec-2019].

[3] “SAE Supermileage - Student Events - Attend - SAE International,” SAE
International ®. [Online]. Available:
https://www.sae.org/attend/student-events/sae-supermileage. [Accessed:
26-Jan-2020].

[4] ATtiny817 Xplained Pro. [Online]. Available:
https://www.microchip.com/DevelopmentTools/ProductDetails/attiny81
7-xpro. [Accessed: 27-Jan-2020].

[5] “Atmel Studio 7,” Atmel Studio 7 | Microchip Technology. [Online].
Available:
https://www.microchip.com/mplab/avr-support/atmel-studio-7.
[Accessed: 27-Jan-2020].

[6] “Arduino Uno Rev3,” Arduino Uno Rev3 | Arduino Official Store.
[Online]. Available: https://store.arduino.cc/usa/arduino-uno-rev3.
[Accessed: 27-Jan-2020].

[7] “MC33812 and S12P Small Engine Control,” NXP. [Online]. Available:
https://www.nxp.com/products/power-management/smart-switches-and-
drivers/low-side-switches/mc33812-and-s12p-small-engine-control:KIT
33812ECUEVME. [Accessed: 27-Jan-2020].

APPENDIX

A. Design Alternatives
In our design, we designed our system around using the

ATTiny817 chip. On paper it is fast enough for our
computational speed requirement while also being
recommended by a faculty member. Using this as our
foundation we did see some drawbacks to the chip. We would
only be able to output around a 5V peak voltage. This is not
enough to open and close the fuel injector which needs around
12V. This is where the level shifting circuit comes into play.
The level shifter will be able to shift the peak voltage up to the
fuel injectors requirement. Then the output of the level shifter
will feed directly into the driving circuit. The driver will be
able to drive an inductive load which is the fuel injector.
Without this then the fuel injector will not work correctly. An
alternative would have been to use a chip that was designed
for vehicle applications made by NXP , but the board is 8

several hundred dollars. This would have been a good option
since all of the components provided would have been for
vehicle applications, but it would have taken a large portion of
our budget. Ultimately, we decided to go with a
microcontroller that we knew would be fast enough for our
application and also was recommended by faculty. We also
thought it would be a good experience to build our own level
shifter and to learn more about how to drive an inductive load.

8 See [7] in the References Section

6
SDP20 – TEAM #17

B. Technical Standards
We followed several technical standards during the

development of our system. We implemented a rigorous
software testing system. We created Anomaly Reports
following any bug or strange error encountered during testing
and recorded the report in our shared drive. This follows
IEEE 829 technical standard for Software Test
Documentation.

This system is also POSIX compliant and has full
interoperability with other POSIX systems. This follows
IEEE 1003 and while the system itself is limited in what it can
do, it should have no problem being further developed to
interact with other machines with POSIX compliance.

This system also follows IEEE’s guidelines for Floating
Point Arithmetic, IEEE 754. Many older systems used to use
numerous formats for dealing with floating point numbers that
made them a lot less portable, but it is simplified a lot by all
systems following a common standard.

C. Testing Methods
Until now, we made progress on the basic functionality of

the ECU system. Then we must test each part whether it can
successfully work by itself. We mainly used an oscilloscope to
watch the signals to check them.

For the engine input signals part, when we changed the
resistance of the potentiometers, there was a changed wave
shown on the oscilloscope.

And for the MCU part, we also used an oscilloscope to
watch and analyze the pulse width of the different resistance
of potentiometers. The wave should be a rectangular wave and
the pulse width is around about 10ms. In addition, we tried to
use some data to see whether they are matched with the
lookup table.

Last but not least, it was testing the level shifter and driver.
Without other parts in the ECU, we used the function
generator to build a simulated rectangular signal at 6000RPM
(100Hz) and the high voltage being 3.3V to synthesize the
output signal from our MCU. Then we checked the output
signal of the level shifter and driver which looks like a
rectangular wave with a high voltage of 12V, and it has the
correct pulse width. This is the same as the input.

In conclusion, to test the whole system, we were connecting
to a fuel injector. And the fuel injector will be injecting
compressed air. Besides this, we also must watch the output
pulse width of the fuel injector. We put a finger on the end of
the fuel injector so that we could feel the intermittent air flow.

D. Team Organization
Our team is organized well. We meet every week with our

advisor. We also meet throughout the week as a group to talk
about what we’ve worked on or what we have planned.
Attendance at our weekly meetings is great. It is very rare that
we do not have everyone in attendance. Our expertise is split
up from our majors. The two electrical engineering majors,

Takuya and Yongjie, work as the hardware team. The two
computer engineering majors, Jack and Xueteng, work as the
software team. We tend to stick to our expertise, but since we
all have a baseline knowledge of each other’s work then we
are never afraid to help each other out. We communicate
through email, online messaging, and in person. Sometimes
when communicating through email or online messaging isn’t
working then we will schedule a video call to get our points
across without the obscurity of text messages. Overall, we
help each other and get along well. There has not been a single
time in which any of us have felt that our opinion or advice
isn’t wanted. Whenever one of us has some sort of idea or
suggestion then we speak up and talk through it.

E. Beyond the Classroom
Takuya – Besides technical skills that I have needed to

develop I think that the most important skills that I have
applied from my professional life would be from a
management perspective. I have used many of the techniques
that I have seen in my professional life to make sure that we as
a team have good communication and clear goals in mind. As
for design, many resources have given me ideas as to how to
approach the hardware problem. From coworkers at my
internship to online resources, many have given me direction
as to how to approach an engineering problem. I am always
relating the issues that come up within our project to similar
issues from my internship experience. Many of the issues with
creating a product from the research and development phase is
like what we are trying to accomplish within our project. It has
all been very informative, especially from relating our issues
to that of the engineering industry.

Jack – One of the main skills I have had to develop with this
project is working with embedded systems. Most of the work
I did was developing the software with Xueteng for our
ATtiny817 microcontroller. We developed this software in C
using Atmel Studio 7 IDE. I have had to become a lot more
comfortable with reading data sheets for the microcontroller as
well as understanding microcontroller concepts. Atmel Start’s
website has been very helpful as it has many examples of
projects that help you get started with the ATtiny817. I have
been drawing a lot of my experience in Computer Science Lab
I & II as I worked with embedded systems in those classes. I
can see a connection with this project and my life as a
professional. I really enjoy programming and want to pursue
that after I graduate; however, I don’t know if I see myself
working on embedded systems specifically.

Yongjie – I have obtained a lot of knowledge from our ECU
project. As a hardware circuit designer, I mainly designed a
circuit to amplify and modify a signal by using the topology
circuit. For this project, I successfully designed a level shifter
and driver, whose function is to let the ECU system drive the
fuel injector. To design this part, I did a lot of research and
changed different kinds of transistors repeatedly to optimize
the circuit and minimize the noise signal as much as possible

7
SDP20 – TEAM #17

to get a precise output control signal from the ECU. In fact,
each integrated circuit design potentially enhances my mastery
of hardware knowledge. Furthermore, I believe in the future of
the professional career life, derived from this project, I can
develop more technical skills in experiencing this kind of
teamwork.

Xueteng – For this project, I mainly did the ECU
programming part with Jack. We used the ATtiny817 and
programmed in C. The ability to debug is very important,
because we have encountered lots of problems each time
adding a new function to the whole program. After MDR, we
improved our debugging skills and we can kind of predict
problems that might appear after we add new functions. The
datasheet is one of the most important resources because it
teaches us the functionality of each part and how to use them,
and another good source is the sample code from the Atmel
start website because we need lots of basic setup codes and it
saves us lots of time. This project taught me that if I want to
build something from scratch, I need to be patient and walk
step by step from designing, building blocks, and assembling.
Every step could have tons of questions, and the only solution
is to face the problems at hand and solve them one at a time.

